Copied to
clipboard

G = C23×C11⋊C5order 440 = 23·5·11

Direct product of C23 and C11⋊C5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C23×C11⋊C5, (C22×C22)⋊C5, (C2×C22)⋊4C10, C222(C2×C10), C112(C22×C10), SmallGroup(440,44)

Series: Derived Chief Lower central Upper central

C1C11 — C23×C11⋊C5
C1C11C11⋊C5C2×C11⋊C5C22×C11⋊C5 — C23×C11⋊C5
C11 — C23×C11⋊C5
C1C23

Generators and relations for C23×C11⋊C5
 G = < a,b,c,d,e | a2=b2=c2=d11=e5=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >

Subgroups: 224 in 64 conjugacy classes, 48 normal (6 characteristic)
C1, C2, C22, C5, C23, C10, C11, C2×C10, C22, C22×C10, C2×C22, C11⋊C5, C22×C22, C2×C11⋊C5, C22×C11⋊C5, C23×C11⋊C5
Quotients: C1, C2, C22, C5, C23, C10, C2×C10, C22×C10, C11⋊C5, C2×C11⋊C5, C22×C11⋊C5, C23×C11⋊C5

Smallest permutation representation of C23×C11⋊C5
On 88 points
Generators in S88
(1 78)(2 79)(3 80)(4 81)(5 82)(6 83)(7 84)(8 85)(9 86)(10 87)(11 88)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 73)(19 74)(20 75)(21 76)(22 77)(23 56)(24 57)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 65)(33 66)(34 45)(35 46)(36 47)(37 48)(38 49)(39 50)(40 51)(41 52)(42 53)(43 54)(44 55)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(57 79)(58 80)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)(65 87)(66 88)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)(45 56)(46 57)(47 58)(48 59)(49 60)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)(67 78)(68 79)(69 80)(70 81)(71 82)(72 83)(73 84)(74 85)(75 86)(76 87)(77 88)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(2 5 6 10 4)(3 9 11 8 7)(13 16 17 21 15)(14 20 22 19 18)(24 27 28 32 26)(25 31 33 30 29)(35 38 39 43 37)(36 42 44 41 40)(46 49 50 54 48)(47 53 55 52 51)(57 60 61 65 59)(58 64 66 63 62)(68 71 72 76 70)(69 75 77 74 73)(79 82 83 87 81)(80 86 88 85 84)

G:=sub<Sym(88)| (1,78)(2,79)(3,80)(4,81)(5,82)(6,83)(7,84)(8,85)(9,86)(10,87)(11,88)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,76)(22,77)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50)(40,51)(41,52)(42,53)(43,54)(44,55), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40)(46,49,50,54,48)(47,53,55,52,51)(57,60,61,65,59)(58,64,66,63,62)(68,71,72,76,70)(69,75,77,74,73)(79,82,83,87,81)(80,86,88,85,84)>;

G:=Group( (1,78)(2,79)(3,80)(4,81)(5,82)(6,83)(7,84)(8,85)(9,86)(10,87)(11,88)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,76)(22,77)(23,56)(24,57)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,65)(33,66)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50)(40,51)(41,52)(42,53)(43,54)(44,55), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88), (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44)(45,56)(46,57)(47,58)(48,59)(49,60)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)(24,27,28,32,26)(25,31,33,30,29)(35,38,39,43,37)(36,42,44,41,40)(46,49,50,54,48)(47,53,55,52,51)(57,60,61,65,59)(58,64,66,63,62)(68,71,72,76,70)(69,75,77,74,73)(79,82,83,87,81)(80,86,88,85,84) );

G=PermutationGroup([[(1,78),(2,79),(3,80),(4,81),(5,82),(6,83),(7,84),(8,85),(9,86),(10,87),(11,88),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,73),(19,74),(20,75),(21,76),(22,77),(23,56),(24,57),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,65),(33,66),(34,45),(35,46),(36,47),(37,48),(38,49),(39,50),(40,51),(41,52),(42,53),(43,54),(44,55)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(57,79),(58,80),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86),(65,87),(66,88)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44),(45,56),(46,57),(47,58),(48,59),(49,60),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66),(67,78),(68,79),(69,80),(70,81),(71,82),(72,83),(73,84),(74,85),(75,86),(76,87),(77,88)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(2,5,6,10,4),(3,9,11,8,7),(13,16,17,21,15),(14,20,22,19,18),(24,27,28,32,26),(25,31,33,30,29),(35,38,39,43,37),(36,42,44,41,40),(46,49,50,54,48),(47,53,55,52,51),(57,60,61,65,59),(58,64,66,63,62),(68,71,72,76,70),(69,75,77,74,73),(79,82,83,87,81),(80,86,88,85,84)]])

56 conjugacy classes

class 1 2A···2G5A5B5C5D10A···10AB11A11B22A···22N
order12···2555510···10111122···22
size11···11111111111···11555···5

56 irreducible representations

dim111155
type++
imageC1C2C5C10C11⋊C5C2×C11⋊C5
kernelC23×C11⋊C5C22×C11⋊C5C22×C22C2×C22C23C22
# reps17428214

Matrix representation of C23×C11⋊C5 in GL7(𝔽331)

1000000
033000000
003300000
000330000
000033000
000003300
000000330
,
330000000
0100000
003300000
000330000
000033000
000003300
000000330
,
330000000
0100000
0010000
0001000
0000100
0000010
0000001
,
1000000
0100000
00330330330330226
001000106
000100329
000010228
000001105
,
323000000
015000000
00033010228
00022700105
00010500225
001330002
000101104

G:=sub<GL(7,GF(331))| [1,0,0,0,0,0,0,0,330,0,0,0,0,0,0,0,330,0,0,0,0,0,0,0,330,0,0,0,0,0,0,0,330,0,0,0,0,0,0,0,330,0,0,0,0,0,0,0,330],[330,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,330,0,0,0,0,0,0,0,330,0,0,0,0,0,0,0,330,0,0,0,0,0,0,0,330,0,0,0,0,0,0,0,330],[330,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,330,1,0,0,0,0,0,330,0,1,0,0,0,0,330,0,0,1,0,0,0,330,0,0,0,1,0,0,226,106,329,228,105],[323,0,0,0,0,0,0,0,150,0,0,0,0,0,0,0,0,0,0,1,0,0,0,330,227,105,330,1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,228,105,225,2,104] >;

C23×C11⋊C5 in GAP, Magma, Sage, TeX

C_2^3\times C_{11}\rtimes C_5
% in TeX

G:=Group("C2^3xC11:C5");
// GroupNames label

G:=SmallGroup(440,44);
// by ID

G=gap.SmallGroup(440,44);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-11,519]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^11=e^5=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽